
© 2020 IBM Corporation

Principle Foundations of Hyperledger Fabric

UC Davis
ECS 189F Introduction to Distributed Ledger
Invited Lecture
November 3, 2020

Marko Vukolić, IBM Research - Zurich

2

Hyperledger: A Linux Foundation project

• Hyperledger is a collaborative effort
created to advance cross-industry
blockchain technologies for business

• Founded February 2016 and has since
gathered significant cross-industry
momentum

• IBM Blockchain Platform is underpinned
by technology from the Hyperledger
project (in particular, Fabric)

• Open source
Open standards
Open governance model

Source: https://www.hyperledger.org/members
Updated: 24 September 2020

Premier

Associate

Academia Associate

General General

https://www.hyperledger.org/members

3

Hyperledger projects

© 2020 IBM Corporation

What is Hyperledger Fabric?

https://www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/alternative-finance/downloads/2019-ccaf-second-global-enterprise-blockchain-report.pdf

5

a Distributed Operating System
for Permissioned Blockchains

• Foundation for developing general-purpose blockchain applications in
general-purpose programming languages

• Emphasis on consensus modularity, confidentiality, resiliency, scalability,
smart-contract programmability.

• V1.0 released June 2017

• V1.4 LTS released January 2019

• V2.0 was released January 2020

• V2.2 LTS released July 2020

• Apache 2.0 license

• 159 developers from 27 organizations

• IBM is one of the many contributing organizations

• https://github.com/hyperledger/fabric

https://github.com/hyperledger/fabric

© 2020 IBM Corporation

Hyperledger Fabric powers IBM Blockchain

7

Advanced tooling
Create & manage smart contracts,

applications & networks

Open technology
Hyperledger Fabric,

Containers, Kubernetes

Deploy anywhere
Comprehensive cloud &

on-premises options

Introducing IBM Blockchain Platform
Build and operate Hyperledger Fabric networks

Developer
tools

Operator
tools

on
prem

IBM
Kubernetes

Service

Container virtualization & orchestration

Multi-cloud deployment

…

8

IBM is making blockchain real for business with
active networks spanning
most industries

IdentityIBM Food Trust™

Trade
Finance

Government
Distributed

Energy

Healthcare

Provenance

Unlisted
Securities

Insurance

Clearing &
Settlement

Bank
Guarantees

9

Blockchain Transparent Supply: IBM Food Trust

Problem
• Product information is siloed across the supply chain
• Product recalls often take weeks, and often performed manually
• Managing inventory (shelf-life, expiry date, product rotations, etc) is a challenge

due to lack of pertinent information integrated with products

Solution
• Food products , including their transformation, are linked across the supply chain

using GS1 data standards
• Suppliers can link or embed useful information into products
• Shoppers can trace quality and origin of products from production through

distribution by a QR code scan

Benefits & Implications
• Near-instant traceback of products to their origin allow for building

consumer trust in products, surgical recalls, and distribution maps
• Inventory optimization using accurate inventory positions across the supply chain with product information
• With the full trace data, there are opportunities for new analytics and insights for supply chain optimization

(Animated) Demo: IBM Food Trust

11

Financial Public Sector Retail Insurance Manufacturing
• Trade Finance
• Cross currency

payments
• Mortgages
• Letters of Credit

• Asset
Registration

• Citizen Identity
• Medical records
• Medicine supply

chain

• Supply chain
• Loyalty programs
• Information

sharing (supplier
– retailer)

• Claims
processing

• Risk provenance
• Asset usage

history
• Claims file

• Supply chain
• Product parts
• Maintenance

tracking

Further examples by (selected) industry

12

… and COVID-19 related use cases: IBM Digital HealthPass

IBM Digital HealthPass balances the need to present health status for access with privacy
https://www.ibm.com/products/digital-health-pass

• Covid-19 test and overall health status is only accessible on personal devices of Users
• Users devices hold Health Passports and, therein, Health Credentials issued by approved Issuers
• Information about approved Issuers (their public keys) registered on the blockchain
• Users present Health Credentials (in the form of a QR code) to Verifiers to obtain physical access
• Verifiers can apply the appropriate policy to Users based on whether or not they are equipped with a

valid and authentic Health Credentials, accessing information about Issuers stored on the blockchain
• No Health Certificate or PII is ever stored on the blockchain (GDRP, HIPAA compliance)

powered by

https://www.ibm.com/products/digital-health-pass

© 2020 IBM Corporation

© 2020 IBM Corporation

https://dl.acm.org/doi/10.1145/3190508.3190538 ~1300 citations since April 2018, university courses…

Fabric v1 enabled, for the first time:
§ A blockchain system that allows blockchain applications (smart contracts) to be written in

general-purpose programming languages (e.g., Go, Java) without being susceptible to security
vulnerabilities and code nondeterminism

§ Addressed system-level challenges related to eliminating native cryptocurrencies from blockchains

§ Enabled modular distributed consensus and network membership services

§ Introduced, to this end, a novel Execute – Order – Validate architecture for blockchains

§ Excellent performance for a variety of blockchain applications

The 2018 Eurosys paper described the revolutionary v1 architecture

https://dl.acm.org/doi/10.1145/3190508.3190538

© 2020 IBM Corporation

What is a Blockchain?
• A chain (sequence, typically a hash chain) of blocks of transactions

- Each block consists of a list of transactions
- Blockchain establishes total order of blocks (and hence, transactions)

15

#234 #235 #236…#1
#0

Genesis
block

Node A Node E

Node B Node D

Node C

Node F

Ledger

Ledger

Ledger

Ledger

Ledger

Ledger

Consensus
protocol
ensures ledger
replicas are
identical*

datastructure

Network of
untrusted nodes

© 2020 IBM Corporation

Blokchain transactions and distributed applications

• Bitcoin transactions
- simple virtual cryptocurrency transfers
- transfer BTC from account to account

• Transactions do not have to be simple nor related to cryptocurrency
- Distributed applications
- smart contracts (Ethereum) or chaincodes (Hyperledger Fabric)

A smart contract is an event driven program, with state,

which runs on a replicated, shared ledger [Swanson2015]

“Smart contract” à (replicated) state machine

16

© 2020 IBM Corporation

Are Blockchains the same as SMR?

SMR = State-Machine Replication [Lamport 78, countless follow-up papers]

Well, not really…

The main difference

17

SMR approach

single trusted application

Blockchain smart-contracts

Multiple applications

Not (necessarily) trusted!
Developed by third party application developers

© 2020 IBM Corporation

Blockchain evolution

18

2009

Blockchain 1.0

• A hard-coded cryptocurrency application
• Limited stack-based scripting language
• Native cryptocurrency (BTC)
• Resource-intensive Proof-of-Work consensus
• Permissionless blockchain system

2014

Blockchain 2.0

• General-purpose blockchain
• Distributed applications (smart contracts)
• Domain-specific language (Solidity)
• Native cryptocurrency (ETH)
• Resource-intensive Proof-of-Work consensus
• Permissionless blockchain system

2017
Blockchain 3.0

• General purpose blockchain
• Distributed applications (chaincodes)
• Different general-purpose languages

(e.g., golang, Java, Node)
• No native cryptocurrency
• Modular/pluggable consensus
• Permissioned blockchain system (geared towards business applications)
• Designed for multiple instances/deployments

© 2020 IBM Corporation

Blockchain evolution

19

2009

Blockchain 1.0

• A hard-coded cryptocurrency application
• Limited stack-based scripting language
• Native cryptocurrency (BTC)
• Resource-intensive Proof-of-Work consensus
• Permissionless blockchain system

© 2020 IBM Corporation

How Bitcoin works (in one slide)
• Step 1: PoW block “mining”

• Step 2: Gossip block #237 across the network

• Step 3: Validation (at every miner)
• Validating transactions in the block, sequentially
• Verify hash of Block #237 < DIFFICULTY

20

#234… #235 #236
A =hash of block #236
B = Root hash of

Merkle tree of tx
hashes

C = nonce

Block #237

Transactions
(payload)

Miner tasks
• Validate transactions in the block
• Find nonce such that

h: hash of Block #237
h = SHA256(A||B||C) < DIFFICULTY

#234… #235 #236
A =hash of block #236
B = Root hash of

Merkle tree of tx
hashes

C = nonce

Block #237

Transactions
(payload)

miner

© 2020 IBM Corporation

Bitcoin energy consumption and performance

§ https://digiconomist.net/bitcoin-energy-consumption

§ 77 TWh/year à 8~9 GW of power

§ More than Switzerland, 0.35% of world electricity consumption

§ 741 kWh per transaction!

§ 1 transaction can power 25 average US households for a day

§ 7 transactions per second peak theoretical throughput

§ Latency about 1 hour (1 block on average every 10 minutes, 6 block confirmation)

21

https://digiconomist.net/bitcoin-energy-consumption

© 2020 IBM Corporation

Blockchain evolution

22

2009

Blockchain 1.0

• A hard-coded cryptocurrency application
• Limited stack-based scripting language
• Native cryptocurrency (BTC)
• Resource-intensive Proof-of-Work consensus
• Permissionless blockchain system

2014

Blockchain 2.0

• General-purpose blockchain
• Distributed applications (smart contracts)
• Domain-specific language (Solidity)
• Native cryptocurrency (ETH)
• Resource-intensive Proof-of-Work consensus
• Permissionless blockchain system

© 2020 IBM Corporation

How Bitcoin works (in one slide)
• Step 1: PoW block “mining”

• Step 2: Gossip block #237 across the network

• Step 3: Validation (at every miner)
• Validating transactions in the block, sequentially
• Verify hash of Block #237 < DIFFICULTY

23

#234… #235 #236
A =hash of block #236
B = Root hash of

Merkle tree of tx
hashes

C = nonce

Block #237

Transactions
(payload)

Miner tasks
• Validate transactions in the block
• Find nonce such that

h: hash of Block #237
h = SHA256(A||B||C) < DIFFICULTY

#234… #235 #236
A =hash of block #236
B = Root hash of

Merkle tree of tx
hashes

C = nonce

Block #237

Transactions
(payload)

miner

Ethereum

Pre-execute

Execution

Executing

© 2020 IBM Corporation

Ethereum energy consumption and performance

§ https://digiconomist.net/ethereum-energy-consumption

§ 11 TWh/year à 14% of Bitcoin

§ 1 transaction can power 1 average US household for a day

§ About 15 transactions per second possible peak throughput

§ Latency about 7-8 minutes (1 block on average every 15 seconds, 30+ block confirmations)

24

https://digiconomist.net/bitcoin-energy-consumption

© 2020 IBM Corporation

Permissioned Blockchains before Fabric v1 (also Fabric v0.5 and v0.6)

25

Node A (leader)

Node B

Node C

Node D

Tx1
Tx2

Tx3
Tx4

Block
#237

… #234 #235 #236 Tx1
Tx2

Tx3
Tx4

Block
#237example:

PBFT [Castro/Liskov02]

Execute tx

© 2020 IBM Corporation

Blockchain SOTA (prior to Fabric v1) follows order-execute architecture

§ Order transactions using Proof-of-Work (PoW) or Byzantine Fault Tolerant (BFT) consensus

§ Execute transactions at each node

§

§ Order/execute architecture is found in many SMR systems
─ Active state machine replication [Schneider90]
─ Paxos and co., Raft
─ Vast majority of BFT

26

© 2020 IBM Corporation

Blockchain evolution

27

2009

Blockchain 1.0

• A hard-coded cryptocurrency application
• Limited stack-based scripting language
• Native cryptocurrency (BTC)
• Resource-intensive Proof-of-Work consensus
• Permissionless blockchain system

2014

Blockchain 2.0

• General-purpose blockchain
• Distributed applications (smart contracts)
• Domain-specific language (Solidity)
• Native cryptocurrency (ETH)
• Resource-intensive Proof-of-Work consensus
• Permissionless blockchain system

2017
Blockchain 3.0

• General purpose blockchain
• Distributed applications (chaincodes)
• Different general-purpose languages

(e.g., golang, Java, Node)
• No native cryptocurrency
• Modular/pluggable consensus
• Permissioned blockchain system (geared towards business applications)
• Designed for multiple instances/deployments

© 2020 IBM Corporation

Hyperledger Fabric – key requirements

§ No native cryptocurrency

§ Ability to code distributed apps in general-purpose languages

§ Modular/pluggable consensus

28

Satisfying these requirements required
a complete overhaul of the (permissioned) blockchain design!

end result

Hyperledger Fabric v1
Eurosys 2018 paper

https://dl.acm.org/doi/10.1145/3190508.3190538

https://dl.acm.org/doi/10.1145/3190508.3190538

© 2020 IBM Corporation

ORDER à EXECUTE architecture issues
§ Sequential execution of smart contracts

─ long execution latency blocks other smart contracts, hampers performance
─ DoS smart contracts (e.g., infinite loops)
─ How Blockchain 2.0 copes with it:

• Gas (paying for every step of computation))
• Tied to a cryptocurrency

§ Non-determinism
─ Smart-contracts must be deterministic (otherwise – state forks)
─ How Blockchain 2.0 copes with it:

• Enforcing determinism: Solidity DSL, Ethereum VM
• Cannot code smart-contracts in developers’ favorite general-purpose language (Java, golang, etc)

§ Confidentiality of execution: all nodes execute all smart contracts

§ Inflexible consensus: Consensus protocols are hard-coded

§ Inflexible trust models: consensus trust model becomes also application trust model

29

© 2020 IBM Corporation

Existing blockchains’ architecture

input tx tx against smart contracts

Hyperledger Fabric v1 architecture

EXECUTE à ORDER à VALIDATE

Fabric v1 architecture in one slide

30

Application consists of two components:
1) Chaincode (execution code)
2) Endorsement policy (validation code)

© 2020 IBM Corporation

Node roles in Fabric

§ Fabric splits the roles of the nodes

§ Peers
─ Hold the application state
─ Execute and validate transactions

§ Ordering service
─ Composed of ordering service nodes (OSNs or orderers)
─ Build the blockchain data structure
─ Impose total order across transactions, grouped in blocks

§ Clients
─ Submit transactions to the system

31

© 2020 IBM Corporation

Hyperledger Fabric v1 Transaction flow

client (C) endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

O
rdering service (consensus)

orderers

Simulate tx execution
Produce r/w sets
Sign TX-ENDORSED

Collect endorsement
(“sufficient” no. of

TX-ENDORSED Msgs)

1

2

4

3

1 <PROPOSE, clientID, chaincodeID, txPayload, timestamp, clientSig>

2 <TX-ENDORSED, peerID, txID, chaincodeID, readset, writeset>

3 BROADCAST(blob)

4 DELIVER(seqno,prevhash,block)

Total order semantics
(ordering service)

broadcast(endorsement)

© 2020 IBM Corporation

client (C) endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

O
rdering service (consensus)

orderers

Simulate tx execution
Produce r/w sets
Sign TX-ENDORSED

Collect endorsement
(“sufficient” no. of

TX-ENDORSED Msgs)

1

2

4

3

1 <PROPOSE, clientID, chaincodeID, txPayload, timestamp, clientSig>

2 <TX-ENDORSED, peerID, txID, chaincodeID, readset, writeset>

3 BROADCAST(blob)

4 DELIVER(seqno,prevhash,block)

(committing)
peer (CP4)

(committing)
peer (CP5)

4

Total order semantics
(ordering service)

broadcast(endorsement)

Hyperledger Fabric v1 Transaction flow

© 2020 IBM Corporation

client (C) endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

O
rdering service (consensus)

orderers

Simulate tx execution
Produce r/w sets
Sign TX-ENDORSED

Collect endorsement
(“sufficient” no. of

TX-ENDORSED Msgs)

1

2

4

3

1 <PROPOSE, clientID, chaincodeID, txPayload, timestamp, clientSig>

2 <TX-ENDORSED, peerID, txID, chaincodeID, readset, writeset>

3 BROADCAST(blob)

4 DELIVER(seqno,prevhash,block)

(committing)
peer (CP4)

(committing)
peer (CP5)

4

Total order semantics
(ordering service)

broadcast(endorsement)

Hyperledger Fabric v1 Transaction flow

© 2020 IBM Corporation

client (C) endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

O
rdering service (consensus)

orderers

Simulate tx execution
Produce r/w sets
Sign TX-ENDORSED

1

2

4

3

1 <PROPOSE, clientID, chaincodeID, txPayload, timestamp, clientSig>

2 <TX-ENDORSED, peerID, txID, chaincodeID, readset, writeset>

3 BROADCAST(blob)

4 DELIVER(seqno,prevhash,block)

(committing)
peer (CP4)

(committing)
peer (CP5)

4

Validate(endorsement,
End. Policy)

Validate(readset vers)
Commit tx

Validate(endorsement,
End. Policy)

Validate(readset vers)
Commit tx

Total order semantics
(ordering service)

Sufficiently enough
to satisfy

Endorsement
Policy (EP)

Collect endorsement
(“sufficient” no. of

TX-ENDORSED Msgs)

local FS
+

Hyperledger Fabric v1 Transaction flow

© 2020 IBM Corporation

Challenge #1: Non-Determinism

§ Goals
─ Enabling chaincodes in golang, Java, … (can be non-deterministic)
─ While preventing state-forks due to non-determinism

§ Hyperledger Fabric v1 approach
─ Execute chaincode before consensus
─ Non-deterministic chaincode execution is tolerated
─ Use consensus to agree on propagation of versioned state-updates

EXECUTEàORDERàVALIDATE:

non-deterministic tx are not guaranteed to be live

(e.g., cannot collect endorsement due to non-determinism)

ORDERàEXECUTE

non-deterministic tx are not guaranteed to be safe (forks can occur)
36

© 2020 IBM Corporation

Challenge #2: Sequential execution of smart-contracts

§ Goals
─ Prevent slow smart-contracts from delaying the system
─ Address DoS without native cryptocurrency

§ Hyperledger Fabric v1 approach
─ Partition execution of smart-contracts
─ Only a subset of peers are endorsers for a given smart-contract (chaincode)

§ DoS, resource exhaustion?
─ Fabric v1 transaction flow is resilient to non-determinism
─ Endorsers can apply local policies (non-deterministically) to decide when to abandon the execution

of a smart-contract
─ No need for gas/cryptocurrency!

37

© 2020 IBM Corporation

Challenge #3: Confidentiality of execution

§ Goal
─ Not all nodes should execute all smart contracts

§ Hyperledger Fabric v1 approach
─ Partition execution of smart-contracts
─ Only a subset of peers are endorsers for a given smart-contract (chaincode)

§ Later extended to Private chaincode execution leveraging Intel SGX
─ Fabric Private Chaincode, SRDS 2019, https://arxiv.org/abs/1805.08541 (IBM Research + Intel collaboration)
─ Available in v1.4

§ Confidentiality of data (versioned updates) was later added for certain token applications
─ Support for Zero Knowledge Asset Transfer (ZKAT) in Fabric v2-alpha
─ https://eprint.iacr.org/2019/1058

38

https://arxiv.org/abs/1805.08541
https://eprint.iacr.org/2019/1058

© 2020 IBM Corporation

Challenge #4: Consensus modularity/pluggability
§ Goal

─ No-one-size-fits-all consensus à Consensus protocol must be modular and pluggable

§ Hyperledger Fabric v1 approach
─ Fully pluggable consensus (was present in order-execute v0.6 design as well)

§ HLF v1 consensus (ordering service) implementations
─ Centralized! (SOLO, mostly for development and testing)
─ Crash FT (KAFKA, thin wrapper around Kafka/Zookeeper)
─ Both deprecated since v2.0
─ Crash FT (RAFT, wrapper around etcd/raft) since v1.4.1

§ BFT Consensus
─ BFT-SMaRt Java library (Research collaboration with University of Lisbon) as PoC

• Code: https://github.com/jcs47/hyperledger-bftsmart
• Paper: https://arxiv.org/abs/1709.06921, later appeared in DSN 2018

─ Ported also to Go in 2019: https://github.com/SmartBFT-Go/
─ «Native» BFT implementation targeting about 100 orderers – in progress, expected in 2021

• Based on Mir-BFT, https://arxiv.org/abs/1906.05552

39

https://github.com/jcs47/hyperledger-bftsmart
https://arxiv.org/abs/1709.06921
https://github.com/SmartBFT-Go/
https://arxiv.org/abs/1906.05552

© 2020 IBM Corporation

Mir-BFT: Scalable and High-Throughput BFT consensus for Blockchains
(paper is available at https://arxiv.org/pdf/1906.05552.pdf)

40

Main Design Principles
§ Multiple leaders

─ Multiple leaders propose requests in parallel (vs PBFT single leader)

§ Prevents duplication that may arise with multiple leaders
─ Request hashspace divided in buckets and sharded across a set of

leaders (this deals with request duplication)
─ Bucket assignment to leaders periodically rotates (this eliminates

censoring attacks)

§ Incrementally built on proven protocol (PBFT)
─ Critical for easier reasoning about correctness

Other features
§ WAN latencies at the order of 1-2s (finality)

§ High performance in clusters (LAN) as well

§ Robust to performance attacks

§ Configurable as crash-fault tolerant (replacing Raft)

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100

TR
AN

SA
C

TI
O

N
S

PE
R

 S
EC

O
N

D
 [T

PS
]

NUMBER OF NODES

THROUGHPUT: WAN, 1GBPS NETWORK
FABRIC-SIZED TRANSACTIONS (3500 BYTES)
Mir-BFT Single-leader BFT (PBFT) Fabric validation bottleneck

https://arxiv.org/pdf/1906.05552.pdf

© 2020 IBM Corporation

Challenge #5: Distributed applications with configurable trust assumptions

§ Execution code (a.k.a. chaincode)
─ Execute untrusted chaincode before consensus
─ Non-deterministic chaincode tolerated
─ EXECUTEàORDERàVALIDATE: non-deterministic tx are not guaranteed to be live
─ ORDERàEXECUTE: non-deterministic tx are not guaranteed to be safe (forks)

§ Validation code (a.k.a. endorsement policy)
─ Deterministic(!), executed post-consensus
─ Deployed by a set of administrators (e.g., majority of nodes on the network)
─ Instantiated by chaincode
─ Examples

• K out of N chaincode endorsers need to endorse a tx
• Alice OR (Bob AND Charlie) need to endorse a tx
• Fabcoin – Bitcoin-inspired UTXO authority-minted cryptocurrency for Fabric
• Customized validation code

41

Fabric mixes
passive and active replication

into hybrid replication

© 2020 IBM Corporation

Fabric performance (Fabcoin)

42

© 2020 IBM Corporation

Fabric performance (Fabcoin)

43

© 2020 IBM Corporation

Fabric performance (Fabcoin)

44

With peer gossip

©2016 IBM Corporation

Thank You!

